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Abstract

Amplitude-based fracture analysis detects the amplitude
variation with azimuth and assumes the variation is due
to horizontal transverse isotropy induced by aligned
vertical or subvertical fractures. However, a dipping
reflector in an isotropic background medium can
produce azimuthal amplitude variations as well, and the
pattern of the variation is similar to that caused by
anisotropy. In practice, the dip-induced deceptive ampli-
tude variations with azimuth should be removed before
fracture analysis.

Introduction

There are many fractured hydrocarbon reservoirs in the world.
The fractures not only provide storage space to hold oil and gas
in reservoirs, but also increase the permeability of reservoirs, or
provide pathways for oil and gas flowing to well bores to be
produced. On the other hand, cemented or mineralized frac-
tures are barriers to oil and gas flow. Depiction of open fracture
density and orientation is an important aspect of seismic reser-
voir characterization. It is important for geologists, geophysi-
cists and reservoir engineers to have detailed maps of fracture
density and orientation when they are making development
plans for fractured reservoirs. Based on the fracture informa-
tion, they can optimize their development plans accordingly
and choose optimal locations for production and injection wells
to maximize the economic value of the reservoirs.

Seismic PP reflection data can be used for fracture analysis.
Crampin et al. (1980) extracted fracture information from P-
wave velocity anisotropy. Thomsen (1988) discussed normal
moveout (NMO) velocity in directions parallel and perpendi-
cular to the strike direction of the fractures. Tsvankin (1997)
derived the NMO velocity in an arbitrary direction. Lefeuvre
(1994) first utilized amplitude variation with azimuth from PP
reflection data to detect fractures. Riiger (1998) analyzed the
theory of amplitude variation with azimuth for reflected
waves, and many others (e.g. Lynn et al, 1996; Teng and
Mavko, 1996; Gray and Head, 2000; MacBeth and Lynn, 2001;
Zheng and Gray, 2002; Zheng et al.,, 2004, 2008) worked on
seismic fracture analysis based on the azimuthal variation of
reflection amplitude.

In isotropic media, when an incident angle is small (< 30°), the
amplitude of the reflected seismic wave off an interface of two
layers can be expressed as (Shuey, 1985):

R(@)= A+ Bsin* 0 . (1)
where 6 is the average angle of the seismic wave incident on
and emergent from the reflector. The AVO intercept is given by
— i ( AL + %
the coefficient 2 V. , p ~ is the P-wave normal-incident
reflectivity. The AVO gradient is given by

AV V V.o, AV
B=t ot Py
27, v, ¥

V, and V, are the average P- and S-wave velocities of the upper
and lower layers respectively and p is the average bulk density
of the two layers. AV, and AV, are the differences in the P- and
S-wave velocities of the two layers respectively, and Ap is the

difference in the bulk density between the two layers.

It is common to consider a fractured medium as an HTI
(Horizontal Transverse Isotropic) medium. When the media are
HTI, Riiger (1998, 2002) shows that the azimuthal variation of
the reflection coefficients can be described by an expanded
version of Shuey’s equation. Then the AVO gradient, B, of equa-
tion (1) is composed of an azimuthally invariant term B* plus
an anisotropic contribution B multiplied by the squared
cosine of the azimuthal angle between the seismic ray path and
the normal direction of fracture strike,

R(6)=A+[B" +B" cos’ @lsin’6, ()

where,
. 1 AV V. A V., AV
B =_— p_z(_s)Z_p_4(_s)2_S,
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where 6® and y are the Thomsen’s anisotropic parameters for
an HTI medium. Ad® is the difference in 6@, and Ay is the
difference in y between the upper and lower layers. ¢ is the
angle between the shot-receiver direction and the direction of
the axis of symmetry which is perpendicular to the fractures.
4@ is an indicator of P-wave anisotropy, which is the relative
difference of the NMO velocity in the direction perpendicular
to the fractures and the vertical velocity. The superscript v here
is to indicate that it is for vertical fractures (HTI media). yis the
relative difference of the fast S-wave velocity (both wave prop-
agation and particle motion in the directions parallel to the
fractures) and the slow S-wave velocity (wave propagation in
the direction perpendicular to the fractures).
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Figure 1. Three seismic lines with various azimuth, (a) strike line, (b) dip line, and (c) and arbitrary azimuthal line.

However, a dipping reflector in isotropic media can introduce
azimuthal variation of the amplitude of seismic reflection
waves which could be misinterpreted as “anisotropy”. This
deceptive amplitude variation with azimuth may mislead frac-
ture analysis.

Consider an isotropic 3D volume with a dipping interface with
three seismic lines with different azimuths passing through the
same location on the surface, as illustrated in Figure 1. A surface
location is identified by a black dot, with a corresponding zero-
offset reflection point in the dipping plane identified by the
blue dot. The line connecting these points is normal to the
reflecting surface. The three seismic lines pass through the zero-
offset location, are a strike line (a), a dip line (b), and an arbi-
trary azimuth line (c). The blue surface represents a plane that
contains all the offset raypaths for the corresponding lines.

The offset traveltime T for the strike line in Figure 1(a) are
computed with

T°=T"+—" (3a)

where T, is the zero-offset traveltime, /i the half source-receiver
offset, and V the velocity of the medium. The plane of all the
raypaths is normal to the dipping reflector.

The dip line in Figure 1(b) requires special attention to the
velocities and the traveltime equation now becomes

2 2 2
4h”cos” 3 4h
2 2

V Stk—Dip
where g is the dip angle of the interface and the stacking
velocity, Vgy.p,, is defined with

Vegepy =V /cOSPB .

All other lines with different azimuths ¢, as illustrated in Figure
1c, will have stacking velocities that vary between V and V5#Dip,
Even though the velocity of the medium is constant and

isotropic, the stacking velocities are dependent on the azimuth
of a line, and may be mistakenly interpreted as anisotropy.

T’=T+ =T+ ,(3b)

The purpose of the discussion associated with Figure 1 is to
define the stacking velocity relative to the dip and source-
receiver azimuth and relate it to the apparent amplitude
anisotropy of a dipping event.

(a)

P

(b)
Figure 2. Geometry for defining the apparent dip for a 2D seismic line
above a 3D dipping reflector, with (a) showing zero-offset normal incident
raypaths, and (b) the geometry of a plane containing the offset raypaths.
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Theory

A dipping reflector in isotropic media can introduce azimuthal
variation of the amplitude of seismic reflection waves, in a
similar pattern of that caused by azimuthally anisotropic
media. For a given offset, the incident angle for the seismic
wave traveling in the strike direction of the dip reflector is
larger than that traveling in the dip direction. Therefore, for the
same source-receiver offset, the amplitudes of the reflected
seismic waves in the two directions are different, because the
incident angles are different.

Levin (1971) derived an equation of the stacking velocity for a
reflection from a dipping reflector. To extend his work, an equa-
tion of the amplitude variation versus offset and azimuth for a
reflection from a dipping reflector is derived and presented
here. Figure 2(a) shows a dipping reflector in a volume (x, y, z)
with the dip 8 and the X-axis chosen to be parallel to the dip
direction. The strike direction is parallel to the Y-axis. A 2D
seismic line is defined on the surface by the blue line BE with an
azimuthal angle g referenced to the dip direction. All zero-offset
raypaths will be normal to the dipping reflector with reflections
points that lie on the line CE. All raypaths will lie on the plane
defined by BCE.

As shown in Figure 2(b), BC is normal to the dipping reflector,
AC normal to the acquisition surface (i.e., the z=0 plane) and the
angle ACB is equal to f, and the angle ABD is ¢. In the right-
angle triangle ABC, by defining the distance BC as 1.0, then

AC=cosf , (4a)

AB=sinf . (4b)

The line AC is projected onto the plane BCE to produce the line
DC that is normal to the 2D line on the surface BE. The length
of BD is

BD = ABcos@ =sin Scos ¢ . (40)

The triangles BCD and BCE are similar, therefore the angles BEC
and BCD are the same, called g* which is the apparent dip
angle of the dipping reflector with respect to the 2D seismic line
BE, or

sin * = % =sin B cosg. (4d)

Now the problem in 3D space is simplified to a problem in a 2D
plane BCE (Figure 3) with an arbitrary azimuth ¢. Assuming a
source is at point S, and a receiver is at point R. The apparent
dip angle of the reflector is *. S’ is the mirror image of the
source S with respect to the dip reflector. The angle between
lines SR and RN is *. M is the midpoint between source S and
receiver R, and MM, is normal to the reflector. Travel time for
seismic waves from the source location, S, to the reflection
point, G, and to the receiver location, R, is equivalent to travel
time from S’ to R. From the geometry shown in Figure 3, it is not
difficult to find out the relationships between these line
segments are

SN = xsin 8, (5a)

1
SS, = d+5SN , (5b)
§S'=28S,=2d+xsinf8", (5¢)

RN =xcosf3, (5d)
NS'=SS'-SN=2d , (5¢)
RS'=NS”+RN> =\J4d> +x’ cos’ B, (5)

where d is the distance from the midpoint M to the reflector(i.e.,
length of line MM,); x is the source-receiver offset(i.e, length of
SR). According to the cosine law, the incident angle, 6, can be
written as

SSP4 RS2 % 2d
2-8§-RS' \/4dz+x2 cos’ B’
By substituting equation (4d) into (6), equation (6) becomes
2d
cosf = . (7)
\/4a’2 +x” —x7sin’ Bcos’ @

Defining 6, as the incident angle for the flat reflector (8= 0) with
the same offset, we can write

cosf = (6)

2d
cosl, = ———, (8a)
4d* +x*
sin@, = — (8b)
4d’ + x°

After some manipulations, the incident angle for a dipping
reflector can be written as

cos’ 6,

.2
sin"@=1- .
1—sin” @, sin’ Bcos’ @

Therefore, for sufficiently small values of § and 6,, one can
write a first order approximation as,

sin® @ = sin” 6, (1 —cos’ B, sin” Bcos’ @). (9

where the relationship of 1/(1-x) ~ 1+x is used.

apparent dip angle

dipping reflector

i g
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o

Figure 3. Geometry of a 2D seismic line with a dipping reflector.

CJEG 12 June 2014



Ye Zheng, John Bancroft, and Don Lawton

Substituting equation (9) into Shuey’s AVO equation (equation seismic lines
1), the amplitude variation with incident angle and azimuth for
the reflections from a dipping reflector is

R(p) = A+ B(1—cos’ 6, sin> B cos” p)sin” 6, . (10)

By defining B" =-Bcos’ §,sin’ § , equations (10) becomes in
the same form as equation (2). In practice, when seismic data
are being processed, there is no prior knowledge about whether
the reflector is dipping or not. For a dipping reflector in an
isotropic medium, the pattern of the amplitude variation with
azimuth is similar to the pattern for a flat reflector in an
anisotropic medium. Therefore, it is impossible to distinguish
what causes the amplitude variation with azimuth. Thus, it is
necessary to remove the dip effect before azimuthal AVO
analysis. Common-angle prestack migration is a tool that can be
used to remove the dip effect and preserve the true reflection
angles which will be compromised by the industry standard
common-offset migration (Zheng, 2006). (@)

If the dip angle of reflectors is small, the amplitude variation seismic lines
with azimuth caused by the dipping reflectors might not be
significant. However, when the dip angles are greater than 5°,
the effect of the dipping reflectors cannot be ignored. Figure 4
shows an example of the amplitude variation with azimuth
caused by a dipping reflector (30°) in an isotropic medium
comparable to that caused by a flat reflector in an HTI
anisotropic medium (B = 0.1), which is equivalent to a moder-
ately anisotropic medium with the 5® of -0.05, and the y of 0.08
for the velocities specified in the next paragraph).

Figure 4 showcases two earth models, one isotropic (Figure 4a)
and the other HTI anisotropic (Figure 4b). Both models contain
two layers and the upper layer is isotropic in both cases. The P-
wave velocity is 3300 m/s in the upper layer and S-wave >
velocity 1500 m/s. The P-wave velocity is 3500 m/s in the 2l
lower layer and S-wave velocity 2333 m/s for the isotropic (b)
model. For the HTI anisotropic model, the lower layer P-wave

velocity is 3500 and S-wave velocity 2333 m/s along the direc- 0.04
tion of fracture orientation. There is a dipping reflector with a
dip angle of 30° in the isotropic model, while the HTI
anisotropic model has a flat reflector and the anisotropic
gradient, B, is 0.1 (moderate anisotropy). Amplitude curves
are calculated (using equation (10) for the isotropic model and
equation (2) for the anisotropic model) at different incident 0=201
angles (0°, 10°, 20° and 30°, respectively).

’

,»- B™=0.1 anisotropic

0.02 0=10°|

There are four pairs of curves in Figure 4(c). The red curves are
the calculated reflection amplitudes from the flat reflector for
the anisotropic medium; and the blue curves are the reflection
amplitudes from the dipping reflector for the isotropic case. As
shown in the figure, the red and blue curves match very closely. - -

These two models create almost same amplitude response. If Bt e N G, ~_ P
the dip effect is not removed before fracture analysis, it becomes . e
difficult to distinguish whether the amplitude variation of =0-]

azimuth is caused by azimuthal anisotropy or a dipping
reflector.
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(c)
Figure 4. The comparison of amplitude from two models. One is (a) a
dipping reflector in an isotropic medium, and another is (b) a flat reflector
in an HTI medium. (c): Amplitude variations with azimuth from the two
models are shown at four different incident angles (). Red curves show
the amplitude from the HTI/flat reflector model, whereas the blue curves
show the amplitude from the isotropic/dipping reflector model.

CJEG 13 June 2014



Dip-induced apparent anisotropy

Conclusions

Theoretical analysis shows that the pattern of the reflection
amplitude variation with azimuth caused by a dipping inter-
face in isotropic media is very similar to the amplitude variation
with azimuth caused by a flat interface in anisotropic media.
The dip-induced deceptive “anisotropy” may mislead ampli-
tude-based fracture detection in practice, since this type of frac-
ture detection searches for azimuthal variation of amplitude
and assumes the variation is caused by anisotropy. For strati-
graphic areas, the deceptive “anisotropy” may not be a big
problem. However, in structured areas, where dipping layers
are expected, the apparent anisotropy must be eliminated, e.g.
by common —angle prestack migration, before applying ampli-
tude-based fracture detection.
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