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Summary 

 

We present the Arbitrarily Sampled Fourier Transform 

(ASFT) method for 5D interpolation, which incorporates 

several enhancements over existing methods. The ASFT 

method is able to use true input trace positions and solves 

spatial frequency contents at arbitrary locations in 

wavenumber domain, and is able to achieve better sparsity 

in the f-k4 domain. ASFT was tested on a dataset in the 

Western Canadian Sedimentary Basin (WCSB) and 

produced excellent interpolation results. 

 

Introduction 

 

Seismic trace interpolation, which spatially transforms 

irregularly sampled field data to regularly sampled data or 

to any desired grid in general, is an important step in 

seismic data processing. A class of algorithms used in the 

industry, such as Minimum Weighted Norm Interpolation 

(MWNI) (Liu and Sacchi, 2004; Trad 2009), Projection 

Onto a Convex Set (POCS) (Abma and Kabir, 2006) and 

Anti-Leakage Fourier Transform (ALFT) (Xu et al., 2005; 

Xu et al., 2010) are based on the Fourier theory in the f-k4 

domain by computing the estimated spatial frequency 

contents of irregularly sampled data.  

 

Fourier Theory Based 5D Interpolation 

 

For Fourier theory based 5D interpolation, the seismic data 

is composed of 1-dimensional temporal information and 4-

dimensional trace spatial information, and it is said to be in 

the time-spatial t-x4 domain. 

 

As a first step, it’s customary to transform the data from t-

x4 domain to temporal frequency-spatial f-x4 domain via 

conventional Fast Fourier Transform (FFT). The data for 

each temporal frequency 𝑓 is called a “temporal frequency 

slice”. 

 

Then, for each temporal frequency slice, the interpolation 

algorithm computes the “spatial frequency contents” of the 

input data in the wavenumber domain k4.  

 

The spatial frequency contents, denoted by 𝑆, typically 

consist of many Fourier coefficients. Each Fourier 

coefficient, denoted by 𝑐(𝑘), is a complex number 

representing the energy corresponding to its wavenumber 

𝑘, which is a 4-dimentional vector in the wavenumber 

domain. All solved Fourier coefficients together form the 

estimated spatial frequency contents, and interpolated 

traces at regularized locations are computed by inverse 

Fourier transform. 

 

Let 𝑐(𝑘) be a Fourier coefficient and 𝑘 be the associated 

wavenumber, the inverse Fourier transform onto a 4-

dimensional location 𝑥 is, with appropriate normalization, 

 

 𝑓−1(𝑐(𝑘), 𝑥) = 𝑐(𝑘)𝑒𝑖2𝜋<𝑘,𝑥> (1) 

 

where <, > is the inner product operator. 

 

Let S be the spatial frequency contents of a given temporal 

frequency slice; the final interpolated result at 𝑥 is obtained 

by summing up the inverse transform values from the entire 

spatial frequency contents, that is, 

 

 𝐼(𝑆, 𝑥) = ∑ 𝑓−1(𝑐(𝑘), 𝑥)

𝑐(𝑘)∈𝑆

 (2) 

 

All the Fourier based 5D interpolation methods mentioned 

above are based on the same principle; however, there are 

differences in the actual implementations in estimating the 

spatial frequency contents, which cannot be computed 

directly by FFT since the input trace locations are irregular. 

These differences can have a significant impact on the 

effectiveness and final quality of the interpolation 

algorithm. 

 

Estimating Spatial Frequency Contents in the k4 

Domain 
 

Binning is used in POCS and MWNI such that each input 

trace is treated as if it’s at the nearest location in a regular 

grid in the x4 domain. From there, the spatial frequency 

contents are estimated by FFT combined with an 

optimization scheme. However, by using bin locations it 

might significantly lose interpolation accuracy. 

 

ALFT uses true input trace locations and computes the 

spatial frequency contents in an iterative manner: in each 

iteration, it first calculates the estimated energy associated 

with each of the Fourier coefficients from a pre-selected set 

of wavenumbers (typically a regular grid of points, denoted 

by 𝑊) in the k4 domain by a weighted Discrete Fourier 

Transform (DFT) method: let 𝑇 be temporal frequency slice 

input data in the x4 domain indexed by 𝑙, and each trace 𝑡𝑙 

be associated with location 𝑥𝑙, energy 𝑒𝑙, and an 

appropriately defined weight 𝑤𝑙. For a wavenumber 𝑘 ∈
𝑊, its corresponding Fourier coefficient is estimated as, 
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 𝑐(𝑘) ≈ ∑ 𝑤𝑙𝑒𝑙𝑒−𝑖2𝜋<𝑘,𝑥𝑙>

𝑡𝑙∈𝑇

 (3) 

 

Then, it optimizes 𝑐(𝑘) and selects the Fourier coefficient 

𝑐̃(𝑘) with the largest energy, 

 

𝑐̃(𝑘)  = arg max
𝑘∈𝑊

|𝑐(𝑘)| (4) 

 

Then 𝑐̃(𝑘) is added to the spatial frequency contents, and it 

performs inverse transform of 𝑐̃(𝑘) to each of the input 

trace locations 𝑥𝑙, subtracts the result from current iteration 

input data to get “residual” data, and proceeds into the next 

iteration with residual data as new input. 

 

However, this selection only guarantees that the Fourier 

coefficient 𝑐̃(𝑘) has the largest energy among 𝑘 ∈ 𝑊, 

while in general there likely exists some 𝑘̅ satisfying 

𝑘̅ ∈ 𝑘4 but 𝑘̅ ∉ 𝑊 such that  |𝑐̅(𝑘̅)| > |𝑐̃(𝑘) |. Therefore, 

𝑊 must be sufficiently large (fine) so that 𝑐̃(𝑘) is close 

enough to 𝑐̅(𝑘̅). 

  

The need to have a large pre-selected set of wavenumbers 

is a major limitation for ALFT. Since the weighted DFT 

energy estimation, done to every wavenumber in 𝑊, is 

typically the most computationally intensive part of ALFT, 

and the computational cost is linearly proportional to the 

number of wavenumbers, therefore, a finer grid with more 

pre-selected wavenumbers would cause significant increase 

of computational time. 

 

The Arbitrarily Sampled Fourier Transform 
 

To address the problems, we propose a new method, 

Arbitrarily Sampled Fourier Transform (ASFT), for 5D 

interpolation. ASFT is an iterative method. In each 

iteration, a Fourier coefficient is computed in two stages, 

by an optimization scheme. 

 

Let 𝑇 be input data in the x4 domain indexed by 𝑙, and each 

trace 𝑡𝑙 be associated with location 𝑥𝑙 and energy 𝑒𝑙. The 

cost function for Fourier coefficient 𝑐(𝑘) is defined as the 

sum of squared energy of residual data, 

 

 
𝒥(𝑐(𝑘)) ∶= ∑‖𝑒𝑙 − 𝑓−1(𝑐(𝑘), 𝑥)‖2

𝑡𝑙∈𝑇

 (5) 

 

The cost function is the same for both stages but the 

optimization will be different. 

 

In the first stage, we start with a pre-selected set of 

wavenumbers 𝑊. For each 𝑘 ∈ 𝑊, ASFT computes 𝑐(𝑘) 

that minimizes the cost function, 

 

 
𝑐(𝑘) = arg min

𝑘 fixed
𝒥(𝑐(𝑘)) (6) 

  

The role of 𝑐(𝑘) optimization in the first stage is similar to 

the weighted DFT part in ALFT. The optimization can be 

computed by analytical methods, and the computational 

cost for each 𝑐(𝑘) optimization is the same as one weighted 

DFT. However, the result 𝑐(𝑘) obtained from the first stage 

of ASFT is more accurate and easier to interpret, since the 

optimization is a direct cost function minimization, whereas 

the weighted DFT is an estimation. At the end of the first 

stage, the largest Fourier coefficient 𝑐̃(𝑘) is selected and is 

feed into the second stage as the starting point. 
 

The second stage uses the same cost function, but it now 

allows 𝑘  to be at an arbitrary point in the wavenumber 

domain. This can be done by using a gradient-based 

numerical optimization method such as the Conjugate 

Gradient (CG) or the Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm. At the end of the second stage, the 

Fourier coefficient with the largest energy at a wavenumber 

location is computed, that is, we have 

 

𝑐̅(𝑘̅)  = arg min
𝑘̅∈𝑘4

𝒥(𝑐(𝑘)) (7) 

 

which is the desired outcome. 

 

Then 𝑐̅(𝑘̅) is added to the to the spatial frequency contents, 

and ASFT performs inverse transform of 𝑐̅(𝑘̅) to each of 

the input trace locations 𝑥𝑙, subtracts the result from current 

iteration input data to get “residual” data, and proceeds into 

the next iteration with residual data as new input. 

 

ASFT has three advantages compared with ALFT. 

 

First, it allows the use of a coarser grid 𝑊 of pre-selected 

wavenumbers. Since the optimization for each 𝑐̃(𝑘) with 

fixed 𝑘 in the first stage of ASFT is as quickly as the 

weighted DFT in ALFT, and in the second stage of ASFT, 

while requiring gradient-based optimization, only optimizes 

one Fourier coefficient, therefore, ASFT takes much less 

time than ALFT in one iteration due to fewer wavenumbers 

in 𝑊. 

 

Second, the precise optimization of the Fourier coefficients 

causes the residual energy to be reduced at a faster rate. If a 

threshold of residual energy or Fourier coefficient energy is 

used, then ASFT is able to arrive at that threshold in less 

number of iterations. This further strengthens its speed 

advantage. 

 

Third, ASFT results in better interpolation quality, due to 

the fact that the spatial frequency contents are sparser and 
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more accurate. The better accuracy and sparsity reduce 

leakage, which is originally the objective of ALFT. 

 

1D Synthetic Data Test 

 

We present a 1D synthetic data to demonstrate the 

advantages of the Arbitrarily Sampled Fourier Transform. 

 

First, 128 arbitrary sample positions in (0, 128) are 

generated by a random function. Let the sorted result (in 

ascending order) be 𝑥𝑙 , 𝑙 = 1, … , 128. The synthetic data at 

those irregular positions are generated by the function 

 

 
𝑓(𝑥𝑙) = sin (

𝑥𝑙

5
). (8) 

 

Then we compare the reconstructed results at regular grid 

points (1, 2, …, 128) by 1-iteration ALFT and 1-iteration 

ASFT. They are shown in the Figure 1 below along with 

input data. 

 
Figure 1. 1-D synthetic data test; red, irregular input, green, 

reconstruction by ALFT, blue, reconstruction by ASFT. 

 

It can be seen that ASFT is able to reconstruct the data with 

high accuracy, while there’s a small but noticeable error in 

the ALFT reconstruction. This is because that ALFT is only 

able to generate Fourier coefficients at 𝑊. In this case, the 

true wavenumber of the data signal is 10𝜋 = 31.4 … 

However, in a typical setting for ALFT the wavenumber 

only takes integer values, 𝑘 = 31 is selected, resulting in 

interpolation inaccuracy. 

 

The problem can be (partially) mitigated by either 

increasing the number of iterations or specifying a finer 

grid in ALFT, but either of the solutions comes with the 

cost of increasing computational time significantly, 

especially considering that in real data 𝑊 is 4-dimensional, 

so to make the grid 2 times finer requires 16 times the 

computing time. Moreover, even then the reconstruction by 

ALFT would only be an approximation; in contrast, ASFT 

is able to find the exact wavenumber. 

 

Real Data Example 

 

A typical work flow of the ASFT method is shown in the 

flowchart. The input data are CMP gathers with 

deconvolution, statics, scaling and NMO corrected with 

final velocity. Noise attenuation should be applied to the 

input data as well for optimal interpolation output. The 

gathers are sorted into Common Offset-Azimuth (COA) 

domain or Common Offset Vector (COV) domain as 

processers’ preference. At first, 1-D FFT is applied to each 

trace to transform the data from time domain to temporal 

frequency domain. 

 

 
 

Then, data at each temporal frequency is transformed by 

ASFT into the x4 domain using the original spatial 

coordinates. Interpolation is applied to each temporal 

frequency slice in 4-dimensional space/wavenumber 

domain. After solving all uneven spaced wavenumbers in 

the k4 domain, they are inverse transformed back to 

temporal frequency domain by ASFT and further 

transformed back to time domain by FFT. 

 

We have applied ASFT interpolation to a dataset in the 

Western Canadian Sedimentary Basin (WCSB). It is a 

MegaBin dataset with 2:1 aspect ratio; in other words, 

every second inline is empty if the bin is a square. The task 

for interpolation with this dataset is: a. regularizing data in 

azimuth and offset direction, and b. filling the empty 

inlines. 

 

Figure 2 (a) and (b) are CMP gathers before and after 

interpolation. Interpolation output has more traces than the 

input gather as requested. The characters of the input gather 

are naturally preserved after interpolation. 

 

Figure 3 (a) and (b) are inline stacks before and after 

interpolation. They are almost identical, because the inline 

showing here is a live inline in the input data. For this 

inline, interpolation has regularized azimuth and offset. The 

slight difference between the before and after sections is 

caused by different offset/azimuth distribution, since the 

distribution is not uniform before interpolation. 
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Figure 3 (c) and (d) are xline stacks before and after 

interpolation. As mentioned above, every second trace in an 

xline is empty. For easy visual comparison, poststack 

interpolation was applied to the section of Figure 3 (c) so 

that the dead traces are filled. It is clear that the section of 

Figure 3 (d) with ASFT interpolation provides more details 

and higher resolution compared to that with poststack 

interpolation Figure 3 (c). Meanwhile, the comparison also 

demonstrates that ASFT is able to handle MegaBin 

geometry (upsampling) properly. 

 

Figure 3 (e) and (f) are time slices before and after 

interpolation. The comparison shows that the geological 

features are well preserved after interpolation. 

 

Figure 4 (a) and (b) are time slices after migration without 

and with interpolation. The comparison shows that ASFT 

interpolation has reduced migration artifacts and shown 

sharper and clearer geological structures. 

 

Conclusions 

 

We have presented a seismic trace interpolation algorithm, 

the Arbitrarily Sampled Fourier Transform (ASFT) 

method. The ASFT method is able to use true input trace 

positions and solves spatial frequency contents at arbitrary 

locations in wavenumber domain, and is able to achieve 

better sparsity in the f-k4 domain. 

 

The examples presented here have shown that ASFT 

effectively interpolates seismic traces, preserves geological 

structures and enhances prestack migration images. 
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Figure 2. Comparison of gather traces before (a) and after (b) 

ASFT interpolation. 

 
 
Figure 3. Comparison of post-stack results. (a) and (b): inline 
before and after ASFT interpolation; (c): xline with poststack 

interpolation for easy comparison with (d), and (d): xline after 

ASFT interpolation; (e) and (f): time slice before and after ASFT 
interpolation. 

 

 

    
 
Figure 4. Comparison of time slices after interpolation without (a) 

and with (b) ASFT interpolation. ASFT has reduced migration 
artifacts and shown shaper and clearer structures. 

(a) 

 
(b) 


