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Summary  

Our recently developed algorithm, ASFT (Arbitrarily Sampled Fourier Transform), allows interpolating 
seismic data without snapping the input traces into bin centers and solves the Fourier components in the 
continuous wavenumber domain, which means the solved Fourier components are not restricted to a 
predefined grid as in other algorithms. This algorithm preserves amplitude and phase of the input data 
and does not smear AVO and anisotropic responses of the data. Another feature of this algorithm is that 
the output locations after interpolation are flexible, e.g. it can have more azimuthal sectors at far offset 
than at near offset so that each output trace covers approximately the same area in the azimuth-offset 
domain. A real data example will be presented. 
 

Introduction 

In theory, the requirement of seismic acquisition is that the seismic wave field should be sampled in even 
intervals both in time and space with the sampling frequency at least two times higher than signal 
frequency. However, in practice, this will never be satisfied in the space domain, because i) it costs too 
much; ii) field accessibility and environmental restriction prevent deploying receivers and sources in 
some areas. Multi-dimensional interpolation is a tool to make the less ideally sampled data satisfy some 
processing algorithm requirements, such as prestack migration. Furthermore, interpolation is also 
important for merging existing 3D datasets with different acquisition parameters so that the merged 
datasets have a uniform grid.  
 

During the past decade or so, prestack 5-D interpolation became popular and was routinely used in 
processing. Many methods were developed to interpolate seismic traces in the 5-dimensional temporal-
spatial domain. Minimum Weighted Norm Interpolation (MWNI) (Liu and Sacchi, 2004; Trad 2009), 
Projection Onto a Convex Set (POCS) (Abma and Kabir, 2006) and Anti-Leakage Fourier Transform 
(ALFT) (Xu et al., 2005; Xu et al., 2010) are Fourier transform based and work on the f-k4 domain. Other 
methods, such as tensor completion (Trickett et al., 2013; Gao et al., 2015), are also used in the seismic 
processing world. For some practical considerations, the above methods work on a predefined grid either 
in the original data domain or in the transform domain, or both. Therefore, the locations of the input data 
and/or the true wavenumbers are snapped to the grid, which causes smearing of amplitude and phase 
information. To preserve amplitude and phase information, Arbitrarily Sampled Fourier Transform (ASFT) 
was developed (Guo et al., 2015; Zheng et al., 2015), which works in the continuous wavenumber 
domain and uses the true spatial coordinates. 
 

Theory  

The seismic data acquired from the field is considered to be in a 5-dimensional domain, one temporal 
dimension and four spatial dimensions. The 4D spatial domain can be (i) shot X-Y and receiver X-Y; (ii) 
inline, cross line, offset and azimuth; or (iii) inline, cross line, offset-X and offset-Y. The sampling interval 
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in temporal dimension is uniform. However, the sampling intervals in the spatial domain are never 
uniform, due to the restrictions of the field conditions and financial constraint.  
 
For Fourier transform based interpolation methods, each input seismic trace is first transformed from 
time to temporal frequency domain with Fast Fourier Transform (FFT). Then for each temporal 
frequency, the seismic data is transformed from 4D spatial domain to 4D wavenumber domain by FFT 
(MWNI, POCS), or Non-uniform Discrete Fourier Transform (NDFT) (ALFT). Interpolation is applied in 
the 4D wavenumber domain. After interpolation, the data is inverse transformed back to the 4D spatial 
domain and further to the time domain by 1D inverse FFT. All MWNI, POCS and ALFT use inverse FFT 
to transform data from the 4D wavenumber domain to the 4D spatial domain. Because the extent of the 
data in the 4D spatial domain varies, naturally, the wavenumber intervals are not uniform as well. 
Therefore, snapping the non-uniformly sampled wavenumber to a predefined grid might compromise the 
fidelity of the seismic data. To avoid any potential damage to the data, ASFT uses inverse NDFT to 
transform the data from the 4D wavenumber domain to the 4D spatial domain, which preserves the 
accuracy of Fourier components, i.e. the true positions of the wavenumbers and the strength of these 
wavenumbers. 
 

Let s(t, x) be a collection of N seismic traces acquired from the field in a 5-dimensional domain, where t 
represents time and x is a 4-dimensional vector in space with N elements xj, j=1,…,N. Applying 1D FFT 
in time, the data is transformed to the temporal frequency domain by equation (1). 

 

  𝑆(𝑓, 𝑥) = 𝐹𝐹𝑇(𝑠(𝑡, 𝑥))          (1) 

 

Where f is the temporal frequency with a number of elements depending on the time window size.  

 

To estimate the strength of each wavenumber, ASFT starts with a predefined grid, k, with a total of M 

nodes, and calculates the Fourier coefficients of each km. For each temporal frequency, fi, 4-dimensional 
NDFT is applied to transform the data to the 4D wavenumber domain with equation (2). 

 

  𝑊(𝑓𝑖, 𝑘) = ∑ 𝑔(𝑥𝑗)𝑆(𝑓𝑖, 𝑥𝑗)𝑒−2𝜋𝑖𝑘∙𝑥𝑗𝑁
𝑗=1        (2) 

 

Where g(x) is the weighting function related to the distribution of the traces in space. A proper weighting 
function will speed up the optimization process.  

 

After estimating all possible wavenumbers, ASFT starts with one or a few of the strongest wavenumbers 

and optimizes their strength (W) and position (k), and then subtracts the optimized components from the 
original data. The next optimization is on the strongest Fourier components of the remaining data. This 
process repeats until the remaining data is below a user specified threshold. 

 

The key factor differentiating ASFT from other methods is that ASFT not only optimizes the strength of 
the Fourier components, but also the positions of the wavenumbers so the quality of wave field 
reconstruction will not be compromised by the computation grid. 

 

Once all Fourier components are solved for the optimized strengths (𝒘̂) and positions (kop), inverse 
NDFT is applied to transform the optimized wave field back to the space domain, and inverse FFT is 
applied to transform data back to the time domain after summing up all temporal frequencies (equation 
3). Note that kop is not restricted to the predefined grid. It can be anywhere in the wavenumber domain. 
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  𝑠̂(𝑡, 𝑥𝑟𝑒𝑔) = 𝑐 𝐹𝐹𝑇−1(∑ (∑ 𝑊̂(𝑓𝑖,𝑘𝑜𝑝)𝑒2𝜋𝑖𝑥𝑟𝑒𝑔∙𝑘𝑜𝑝)𝑜𝑝𝑖 )     (3) 

 

Where 𝑠̂(𝑡, 𝑥𝑟𝑒𝑔) is the reconstructed data at regularized locations in the time domain, 𝑊̂(𝑓𝑖, 𝑘𝑜𝑝) is the 

optimized Fourier coefficients at the position kop for the temporal frequency fi, and c is a constant scalar. 

 

Flexibility  

One popular domain for interpolation is the azimuth-offset domain. It divides each offset into a number of 
azimuthal sectors, typically 6 or 8. A question often raised by clients is that when the azimuth-offset 
space is divided in such a way, each sector at near offset represents a much smaller area than a sector 
at far offset. In addition, the amplitude variation in azimuthal direction contains the anisotropic information 
and it varies more quickly at far offset. Therefore, it requires denser sampling at far offsets than near 
offsets.  

 

Because ASFT solves Fourier components in the continuous wavenumber domain and use NDFT to 
transform the reconstructed data to the space domain, it has the flexibility to output reconstructed traces 
at any arbitrary locations. For example, more azimuthal sectors at far offset can be chosen to capture 
rapid changes of amplitude with little extra computation cost. 

 

Examples 

ASFT has been applied to a land seismic survey with an orthogonal geometry. The main purpose of 
interpolation is to minimize the footprints of the acquisition geometry and reduce the prestack migration 
artefacts. Figure 1 shows the comparison of time slices after PSTM without (left) and with (right) ASFT 
interpolation. ASFT interpolation reduced migration artefacts and provided a sharper and clearer image 
of the geological structures. 

 

 

Figure 1. Comparison of time slices after PSTM without (left) and with (right) ASFT interpolation. ASFT 
reduced migration artefacts and provided sharper and clearer image of the geological structures. 

 

As mentioned above, ASFT is able to output traces with variable number of azimuthal sectors at different 
offset in order to capture the rapid amplitude changes at far offsets. Figure 2 shows (a) the gather input 
to ASFT interpolation; (b) the gather after interpolation with 4 azimuthal sectors for all offsets; and (c) the 
gather after interpolation with 4 azimuthal sectors for near offsets (0 – 300 m), 8 azimuthal sectors for 
middle offsets (300 – 600 m) and 12 azimuthal sectors for far offset (600 – 900 m). 
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Figure 2. (a) input gather to ASFT; (b) ASFT output gather with 4 azimuthal sectors for all offsets; (c) ASFT 
output gathers with variable number of azimuthal sectors for different offset. In (c), the first 4 panels are the 4 
azimuthal sectors for all offsets, the next 4 panels are the extra 4 azimuthal sectors for mid-offsets, and the 
last 8 panels are the extra 8 azimuthal sectors for far offsets. 

 

Conclusions 

Arbitrarily Sampled Fourier Transform (ASFT) optimizes both strengths and positions of the 
wavenumbers so it preserves the amplitude and phase information better. In addition, it can output to 
flexible locations, e.g. variable number of azimuthal sectors for different offset. Field data test shows 
ASFT minimized the acquisition footprint and produced sharper geological features on the PSTM results. 
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